Sparse Higher Order Čech Filtrations

03/12/2023
by   Mickaël Buchet, et al.
0

For a finite set of balls of radius r, the k-fold cover is the space covered by at least k balls. Fixing the ball centers and varying the radius, we obtain a nested sequence of spaces that is called the k-fold filtration of the centers. For k=1, the construction is the union-of-balls filtration that is popular in topological data analysis. For larger k, it yields a cleaner shape reconstruction in the presence of outliers. We contribute a sparsification algorithm to approximate the topology of the k-fold filtration. Our method is a combination and adaptation of several techniques from the well-studied case k=1, resulting in a sparsification of linear size that can be computed in expected near-linear time with respect to the number of input points. Our method also extends to the multicover bifiltration, composed of the k-fold filtrations for several values of k, with the same size and complexity bounds.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset