Spatial Joint Species Distribution Modeling using Dirichlet Processes
Species distribution models usually attempt to explain presence-absence or abundance of a species at a site in terms of the environmental features (socalled abiotic features) present at the site. Historically, such models have considered species individually. However, it is well-established that species interact to influence presence-absence and abundance (envisioned as biotic factors). As a result, there has been substantial recent interest in joint species distribution models with various types of response, e.g., presence-absence, continuous and ordinal data. Such models incorporate dependence between species response as a surrogate for interaction. The challenge we focus on here is how to address such modeling in the context of a large number of species (e.g., order 102) across sites numbering in the order of 102 or 103 when, in practice, only a few species are found at any observed site. Again, there is some recent literature to address this; we adopt a dimension reduction approach. The novel wrinkle we add here is spatial dependence. That is, we have a collection of sites over a relatively small spatial region so it is anticipated that species distribution at a given site would be similar to that at a nearby site. Specifically, we handle dimension reduction through Dirichlet processes joined with spatial dependence through Gaussian processes. We use both simulated data and a plant communities dataset for the Cape Floristic Region (CFR) of South Africa to demonstrate our approach. The latter consists of presence-absence measurements for 639 tree species on 662 locations. Through both data examples we are able to demonstrate improved predictive performance using the foregoing specification.
READ FULL TEXT