Spatial Transformer Network on Skeleton-based Gait Recognition
Skeleton-based gait recognition models usually suffer from the robustness problem, as the Rank-1 accuracy varies from 90% in normal walking cases to 70% in walking with coats cases. In this work, we propose a state-of-the-art robust skeleton-based gait recognition model called Gait-TR, which is based on the combination of spatial transformer frameworks and temporal convolutional networks. Gait-TR achieves substantial improvements over other skeleton-based gait models with higher accuracy and better robustness on the well-known gait dataset CASIA-B. Particularly in walking with coats cases, Gait-TR get a 90% Rank-1 gait recognition accuracy rate, which is higher than the best result of silhouette-based models, which usually have higher accuracy than the silhouette-based gait recognition models. Moreover, our experiment on CASIA-B shows that the spatial transformer can extract gait features from the human skeleton better than the widely used graph convolutional network.
READ FULL TEXT