Species interactions reproduce abundance correlation patterns in microbial communities
During the last decades macroecology has identified broad-scale patterns of abundances and diversity of microbial communities and put forward some potential explanations for them. However, these advances are not paralleled by a full understanding of the underlying dynamical processes. In particular, abundance fluctuations over metagenomic samples are found to be correlated, but reproducing these through appropriate models remains still an open task. The present paper tackles this problem and points to species interactions as a necessary mechanism to account for them. Specifically, we discuss several possibilities to include interactions in population models and recognize Lotka-Volterra constants as successful ansatz. We design a Bayesian inference algorithm to obtain sets of interaction constants able to reproduce the experimental correlation distributions much better than the state-of-the-art attempts. Importantly, the model still reproduces single-species, experimental, macroecological patterns previously detected in the literature, concerning the abundance fluctuations across both species and communities. Endorsed by the agreement with the observed phenomenology, our analysis provides insights on the properties of microbial interactions, and suggests their sparsity as a necessary feature to balance the emergence of different patterns.
READ FULL TEXT