Spike-Triggered Descent

05/12/2020
by   Michael Kummer, et al.
0

The characterization of neural responses to sensory stimuli is a central problem in neuroscience. Spike-triggered average (STA), an influential technique, has been used to extract optimal linear kernels in a variety of animal subjects. However, when the model assumptions are not met, it can lead to misleading and imprecise results. We introduce a technique, called spike-triggered descent (STD), which can be used alone or in conjunction with STA to increase precision and yield success in scenarios where STA fails. STD works by simulating a model neuron that learns to reproduce the observed spike train. Learning is achieved via parameter optimization that relies on a metric induced on the space of spike trains modeled as a novel inner product space. This technique can precisely learn higher order kernels using limited data. Kernels extracted from a Locusta migratoria tympanal nerve dataset demonstrate the strength of this approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro