ST^2: Small-data Text Style Transfer via Multi-task Meta-Learning

04/24/2020
by   Xiwen Chen, et al.
0

Text style transfer aims to paraphrase a sentence in one style into another style while preserving content. Due to lack of parallel training data, state-of-art methods are unsupervised and rely on large datasets that share content. Furthermore, existing methods have been applied on very limited categories of styles such as positive/negative and formal/informal. In this work, we develop a meta-learning framework to transfer between any kind of text styles, including personal writing styles that are more fine-grained, share less content and have much smaller training data. While state-of-art models fail in the few-shot style transfer task, our framework effectively utilizes information from other styles to improve both language fluency and style transfer accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset