Stance Prediction for Contemporary Issues: Data and Experiments

05/29/2020
by   Marjan Hosseinia, et al.
0

We investigate whether pre-trained bidirectional transformers with sentiment and emotion information improve stance detection in long discussions of contemporary issues. As a part of this work, we create a novel stance detection dataset covering 419 different controversial issues and their related pros and cons collected by procon.org in nonpartisan format. Experimental results show that a shallow recurrent neural network with sentiment or emotion information can reach competitive results compared to fine-tuned BERT with 20x fewer parameters. We also use a simple approach that explains which input phrases contribute to stance detection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro