State-of-the-art Chinese Word Segmentation with Bi-LSTMs

08/20/2018
by   Ji Ma, et al.
0

A wide variety of neural-network architectures have been proposed for the task of Chinese word segmentation. Surprisingly, we find that a bidirectional LSTM model, when combined with standard deep learning techniques and best practices, can achieve better accuracy on many of the popular datasets as compared to models based on more complex neural-network architectures. Furthermore, our error analysis shows that out-of-vocabulary words remain challenging for neural-network models, and many of the remaining errors are unlikely to be fixed through architecture changes. Instead, more effort should be made on exploring resources for further improvement.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset