Statistical Multiresolution Estimation for Variational Imaging: With an Application in Poisson-Biophotonics

04/17/2012
by   Klaus Frick, et al.
0

In this paper we present a spatially-adaptive method for image reconstruction that is based on the concept of statistical multiresolution estimation as introduced in [Frick K, Marnitz P, and Munk A. "Statistical multiresolution Dantzig estimation in imaging: Fundamental concepts and algorithmic framework". Electron. J. Stat., 6:231-268, 2012]. It constitutes a variational regularization technique that uses an supremum-type distance measure as data-fidelity combined with a convex cost functional. The resulting convex optimization problem is approached by a combination of an inexact alternating direction method of multipliers and Dykstra's projection algorithm. We describe a novel method for balancing data-fit and regularity that is fully automatic and allows for a sound statistical interpretation. The performance of our estimation approach is studied for various problems in imaging. Among others, this includes deconvolution problems that arise in Poisson nanoscale fluorescence microscopy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset