Stochastic Data-Driven Variational Multiscale Reduced Order Models
Trajectory-wise data-driven reduced order models (ROMs) tend to be sensitive to training data, and thus lack robustness. We propose to construct a robust stochastic ROM closure (S-ROM) from data consisting of multiple trajectories from random initial conditions. The S-ROM is a low-dimensional time series model for the coefficients of the dominating proper orthogonal decomposition (POD) modes inferred from data. Thus, it achieves reduction both space and time, leading to simulations orders of magnitude faster than the full order model. We show that both the estimated POD modes and parameters in the S-ROM converge when the number of trajectories increases. Thus, the S-ROM is robust when the training data size increases. We demonstrate the S-ROM on a 1D Burgers equation with a viscosity ν= 0.002 and with random initial conditions. The numerical results verify the convergence. Furthermore, the S-ROM makes accurate trajectory-wise predictions from new initial conditions and with a prediction time far beyond the training range, and it quantifies the spread of uncertainties due to the unresolved scales.
READ FULL TEXT