Stochastic Discontinuous Galerkin Methods for Robust Deterministic Control of Convection Diffusion Equations with Uncertain Coefficients

08/31/2021
by   Pelin Çiloğlu, et al.
0

We investigate a numerical behaviour of robust deterministic optimal control problem governed by a convection diffusion equation with random coefficients by approximating statistical moments of the solution. Stochastic Galerkin approach, turning the original stochastic problem into a system of deterministic problems, is used to handle the stochastic domain, whereas a discontinuous Galerkin method is used to discretize the spatial domain due to its better convergence behaviour for convection dominated optimal control problems. A priori error estimates are derived for the state and adjoint in the energy norm and for the deterministic control in L^2-norm. To handle the curse of dimensionality of the stochastic Galerkin method, we take advantage of the low-rank variant of GMRES method, which reduces both the storage requirements and the computational complexity by exploiting a Kronecker-product structure of the system matrices. The efficiency of the proposed methodology is illustrated by numerical experiments on the benchmark problems with and without control constraints.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset