Stochastic Online Optimization using Kalman Recursion

02/10/2020
by   Joseph De Vilmarest, et al.
0

We study the Extended Kalman Filter in constant dynamics, offering a bayesian perspective of stochastic optimization. We obtain high probability bounds on the cumulative excess risk in an unconstrained setting. The unconstrained challenge is tackled through a two-phase analysis. First, for linear and logistic regressions, we prove that the algorithm enters a local phase where the estimate stays in a small region around the optimum. We provide explicit bounds with high probability on this convergence time. Second, for generalized linear regressions, we provide a martingale analysis of the excess risk in the local phase, improving existing ones in bounded stochastic optimization. The EKF appears as a parameter-free O(d^2) online algorithm that optimally solves some unconstrained optimization problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro