Stochastic Variance-Reduced Cubic Regularized Newton Method
We propose a stochastic variance-reduced cubic regularized Newton method for non-convex optimization. At the core of our algorithm is a novel semi-stochastic gradient along with a semi-stochastic Hessian, which are specifically designed for cubic regularization method. We show that our algorithm is guaranteed to converge to an (ϵ,√(ϵ))-approximately local minimum within Õ(n^4/5/ϵ^3/2) second-order oracle calls, which outperforms the state-of-the-art cubic regularization algorithms including subsampled cubic regularization. Our work also sheds light on the application of variance reduction technique to high-order non-convex optimization methods. Thorough experiments on various non-convex optimization problems support our theory.
READ FULL TEXT