Stress-Testing LiDAR Registration
Point cloud registration (PCR) is an important task in many fields including autonomous driving with LiDAR sensors. PCR algorithms have improved significantly in recent years, by combining deep-learned features with robust estimation methods. These algorithms succeed in scenarios such as indoor scenes and object models registration. However, testing in the automotive LiDAR setting, which presents its own challenges, has been limited. The standard benchmark for this setting, KITTI-10m, has essentially been saturated by recent algorithms: many of them achieve near-perfect recall. In this work, we stress-test recent PCR techniques with LiDAR data. We propose a method for selecting balanced registration sets, which are challenging sets of frame-pairs from LiDAR datasets. They contain a balanced representation of the different relative motions that appear in a dataset, i.e. small and large rotations, small and large offsets in space and time, and various combinations of these. We perform a thorough comparison of accuracy and run-time on these benchmarks. Perhaps unexpectedly, we find that the fastest and simultaneously most accurate approach is a version of advanced RANSAC. We further improve results with a novel pre-filtering method.
READ FULL TEXT