Strip-MLP: Efficient Token Interaction for Vision MLP

07/21/2023
by   Guiping Cao, et al.
0

Token interaction operation is one of the core modules in MLP-based models to exchange and aggregate information between different spatial locations. However, the power of token interaction on the spatial dimension is highly dependent on the spatial resolution of the feature maps, which limits the model's expressive ability, especially in deep layers where the feature are down-sampled to a small spatial size. To address this issue, we present a novel method called \textbf{Strip-MLP} to enrich the token interaction power in three ways. Firstly, we introduce a new MLP paradigm called Strip MLP layer that allows the token to interact with other tokens in a cross-strip manner, enabling the tokens in a row (or column) to contribute to the information aggregations in adjacent but different strips of rows (or columns). Secondly, a \textbf{C}ascade \textbf{G}roup \textbf{S}trip \textbf{M}ixing \textbf{M}odule (CGSMM) is proposed to overcome the performance degradation caused by small spatial feature size. The module allows tokens to interact more effectively in the manners of within-patch and cross-patch, which is independent to the feature spatial size. Finally, based on the Strip MLP layer, we propose a novel \textbf{L}ocal \textbf{S}trip \textbf{M}ixing \textbf{M}odule (LSMM) to boost the token interaction power in the local region. Extensive experiments demonstrate that Strip-MLP significantly improves the performance of MLP-based models on small datasets and obtains comparable or even better results on ImageNet. In particular, Strip-MLP models achieve higher average Top-1 accuracy than existing MLP-based models by +2.44\% on Caltech-101 and +2.16\% on CIFAR-100. The source codes will be available at~\href{https://github.com/Med-Process/Strip_MLP{https://github.com/Med-Process/Strip\_MLP}.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset