Strong Invariance Principles for Ergodic Markov Processes

11/24/2021
by   Ardjen Pengel, et al.
0

Strong invariance principles describe the error term of a Brownian approximation of the partial sums of a stochastic process. While these strong approximation results have many applications, the results for continuous-time settings have been limited. In this paper, we obtain strong invariance principles for a broad class of ergodic Markov processes. The main results rely on ergodicity requirements and an application of Nummelin splitting for continuous-time processes. Strong invariance principles provide a unified framework for analysing commonly used estimators of the asymptotic variance in settings with a dependence structure. We demonstrate how this can be used to analyse the batch means method for simulation output of Piecewise Deterministic Monte Carlo samplers. We also derive a fluctuation result for additive functionals of ergodic diffusions using our strong approximation results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro