Structural plasticity on an accelerated analog neuromorphic hardware system

12/27/2019
by   Sebastian Billaudelle, et al.
16

In computational neuroscience, as well as in machine learning, neuromorphic devices promise an accelerated and scalable alternative to neural network simulations. Their neural connectivity and synaptic capacity depends on their specific design choices, but is always intrinsically limited. Here, we present a strategy to achieve structural plasticity that optimizes resource allocation under these constraints by constantly rewiring the pre- and postsynaptic partners while keeping the neuronal fan-in constant and the connectome sparse. In our implementation, the algorithm is executed on a custom embedded digital processor that accompanies a mixed-signal substrate consisting of spiking neurons and synapse circuits. We evaluated our proposed algorithm in a simple supervised learning scenario, showing its ability to optimize the network topology with respect to the nature of its training data, as well as its overall computational efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset