Student-Teacher Learning for BLSTM Mask-based Speech Enhancement

Spectral mask estimation using bidirectional long short-term memory (BLSTM) neural networks has been widely used in various speech enhancement applications, and it has achieved great success when it is applied to multichannel enhancement techniques with a mask-based beamformer. However, when these masks are used for single channel speech enhancement they severely distort the speech signal and make them unsuitable for speech recognition. This paper proposes a student-teacher learning paradigm for single channel speech enhancement. The beamformed signal from multichannel enhancement is given as input to the teacher network to obtain soft masks. An additional cross-entropy loss term with the soft mask target is combined with the original loss, so that the student network with single-channel input is trained to mimic the soft mask obtained with multichannel input through beamforming. Experiments with the CHiME-4 challenge single channel track data shows improvement in ASR performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro