Style-Aware Contrastive Learning for Multi-Style Image Captioning

01/26/2023
by   Yucheng Zhou, et al.
0

Existing multi-style image captioning methods show promising results in generating a caption with accurate visual content and desired linguistic style. However, existing methods overlook the relationship between linguistic style and visual content. To overcome this drawback, we propose style-aware contrastive learning for multi-style image captioning. First, we present a style-aware visual encoder with contrastive learning to mine potential visual content relevant to style. Moreover, we propose a style-aware triplet contrast objective to distinguish whether the image, style and caption matched. To provide positive and negative samples for contrastive learning, we present three retrieval schemes: object-based retrieval, RoI-based retrieval and triplet-based retrieval, and design a dynamic trade-off function to calculate retrieval scores. Experimental results demonstrate that our approach achieves state-of-the-art performance. In addition, we conduct an extensive analysis to verify the effectiveness of our method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset