Subjective Vertical Conflict Model with Visual Vertical: Predicting Motion Sickness on Autonomous Personal Mobility Vehicles
Passengers of level 3-5 autonomous personal mobility vehicles (APMV) can perform non-driving tasks, such as reading books and smartphones, while driving. It has been pointed out that such activities may increase motion sickness, especially when frequently avoiding pedestrians or obstacles in shared spaces. Many studies have been conducted to build countermeasures, of which various computational motion sickness models have been developed. Among them, models based on subjective vertical conflict (SVC) theory, which describes vertical changes in direction sensed by human sensory organs v.s. those expected by the central nervous system, have been actively developed. However, no current computational model can integrate visual vertical information with vestibular sensations. We proposed a 6 DoF SVC-VV model which added a visually perceived vertical block into a conventional 6 DoF SVC model to predict visual vertical directions from image data simulating the visual input of a human. In a driving experiment, 27 participants experienced an APMV with two visual conditions: looking ahead (LAD) and working with a tablet device (WAD). We verified that passengers got motion sickness while riding the APMV, and the symptom were severer when especially working on it, by simulating the frequent pedestrian avoidance scenarios of the APMV in the experiment. In addition, the results of the experiment demonstrated that the proposed 6 DoF SVC-VV model could describe the increased motion sickness experienced when the visual vertical and gravitational acceleration directions were different.
READ FULL TEXT