Sufficient Dimension Reduction for Average Causal Effect Estimation

09/14/2020
by   Debo Cheng, et al.
9

Having a large number of covariates can have a negative impact on the quality of causal effect estimation since confounding adjustment becomes unreliable when the number of covariates is large relative to the samples available. Propensity score is a common way to deal with a large covariate set, but the accuracy of propensity score estimation (normally done by logistic regression) is also challenged by large number of covariates. In this paper, we prove that a large covariate set can be reduced to a lower dimensional representation which captures the complete information for adjustment in causal effect estimation. The theoretical result enables effective data-driven algorithms for causal effect estimation. We develop an algorithm which employs a supervised kernel dimension reduction method to search for a lower dimensional representation for the original covariates, and then utilizes nearest neighbor matching in the reduced covariate space to impute the counterfactual outcomes to avoid large-sized covariate set problem. The proposed algorithm is evaluated on two semi-synthetic and three real-world datasets and the results have demonstrated the effectiveness of the algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro