Supervised Manifold Learning via Random Forest Geometry-Preserving Proximities
Manifold learning approaches seek the intrinsic, low-dimensional data structure within a high-dimensional space. Mainstream manifold learning algorithms, such as Isomap, UMAP, t-SNE, Diffusion Map, and Laplacian Eigenmaps do not use data labels and are thus considered unsupervised. Existing supervised extensions of these methods are limited to classification problems and fall short of uncovering meaningful embeddings due to their construction using order non-preserving, class-conditional distances. In this paper, we show the weaknesses of class-conditional manifold learning quantitatively and visually and propose an alternate choice of kernel for supervised dimensionality reduction using a data-geometry-preserving variant of random forest proximities as an initialization for manifold learning methods. We show that local structure preservation using these proximities is near universal across manifold learning approaches and global structure is properly maintained using diffusion-based algorithms.
READ FULL TEXT