Supervised Speaker Embedding De-Mixing in Two-Speaker Environment

01/14/2020
by   Yanpei Shi, et al.
0

In this work, a speaker embedding de-mixing approach is proposed. Instead of separating two-speaker signal in signal space like speech source separation, the proposed approach separates different speaker properties from two-speaker signal in embedding space. The proposed approach contains two steps. In step one, the clean speaker embeddings are learned and collected by a residual TDNN based network. In step two, the two-speaker signal and the embedding of one of the speakers are input to a speaker embedding de-mixing network. The de-mixing network is trained to generate the embedding of the other speaker of the by reconstruction loss. Speaker identification accuracy on the de-mixed speaker embeddings is used to evaluate the quality of the obtained embeddings. Experiments are done in two kind of data: artificial augmented two-speaker data (TIMIT) and real world recording of two-speaker data (MC-WSJ). Six diffident speaker embedding de-mixing architectures are investigated. Comparing with the speaker identification accuracy on the clean speaker embeddings (98.5 obtained results show that one of the speaker embedding de-mixing architectures obtain close performance, reaching 96.9 between the target speaker and interfering speaker is 5 dB. More surprisingly, we found choosing a simple subtraction as the embedding de-mixing function could obtain the second best performance, reaching 95.2

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro