SWAN: A Generic Framework for Auditing Textual Conversational Systems

05/15/2023
by   Tetsuya Sakai, et al.
0

We present a simple and generic framework for auditing a given textual conversational system, given some samples of its conversation sessions as its input. The framework computes a SWAN (Schematised Weighted Average Nugget) score based on nugget sequences extracted from the conversation sessions. Following the approaches of S-measure and U-measure, SWAN utilises nugget positions within the conversations to weight the nuggets based on a user model. We also present a schema of twenty (+1) criteria that may be worth incorporating in the SWAN framework. In our future work, we plan to devise conversation sampling methods that are suitable for the various criteria, construct seed user turns for comparing multiple systems, and validate specific instances of SWAN for the purpose of preventing negative impacts of conversational systems on users and society. This paper was written while preparing for the ICTIR 2023 keynote (to be given on July 23, 2023).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset