Swift: Compiled Inference for Probabilistic Programming Languages

06/30/2016
by   Yi Wu, et al.
0

A probabilistic program defines a probability measure over its semantic structures. One common goal of probabilistic programming languages (PPLs) is to compute posterior probabilities for arbitrary models and queries, given observed evidence, using a generic inference engine. Most PPL inference engines---even the compiled ones---incur significant runtime interpretation overhead, especially for contingent and open-universe models. This paper describes Swift, a compiler for the BLOG PPL. Swift-generated code incorporates optimizations that eliminate interpretation overhead, maintain dynamic dependencies efficiently, and handle memory management for possible worlds of varying sizes. Experiments comparing Swift with other PPL engines on a variety of inference problems demonstrate speedups ranging from 12x to 326x.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro