Synaptic Strength For Convolutional Neural Network
Convolutional Neural Networks(CNNs) are both computation and memory intensive which hindered their deployment in mobile devices. Inspired by the relevant concept in neural science literature, we propose Synaptic Pruning: a data-driven method to prune connections between input and output feature maps with a newly proposed class of parameters called Synaptic Strength. Synaptic Strength is designed to capture the importance of a connection based on the amount of information it transports. Experiment results show the effectiveness of our approach. On CIFAR-10, we prune connections for various CNN models with up to 96 Further evaluation on ImageNet demonstrates that synaptic pruning is able to discover efficient models which is competitive to state-of-the-art compact CNNs such as MobileNet-V2 and NasNet-Mobile. Our contribution is summarized as following: (1) We introduce Synaptic Strength, a new class of parameters for CNNs to indicate the importance of each connections. (2) Our approach can prune various CNNs with high compression without compromising accuracy. (3) Further investigation shows, the proposed Synaptic Strength is a better indicator for kernel pruning compared with the previous approach in both empirical result and theoretical analysis.
READ FULL TEXT