TAA-GCN: A Temporally Aware Adaptive Graph Convolutional Network for Age Estimation

05/15/2023
by   Matthew Korban, et al.
0

This paper proposes a novel age estimation algorithm, the Temporally-Aware Adaptive Graph Convolutional Network (TAA-GCN). Using a new representation based on graphs, the TAA-GCN utilizes skeletal, posture, clothing, and facial information to enrich the feature set associated with various ages. Such a novel graph representation has several advantages: First, reduced sensitivity to facial expression and other appearance variances; Second, robustness to partial occlusion and non-frontal-planar viewpoint, which is commonplace in real-world applications such as video surveillance. The TAA-GCN employs two novel components, (1) the Temporal Memory Module (TMM) to compute temporal dependencies in age; (2) Adaptive Graph Convolutional Layer (AGCL) to refine the graphs and accommodate the variance in appearance. The TAA-GCN outperforms the state-of-the-art methods on four public benchmarks, UTKFace, MORPHII, CACD, and FG-NET. Moreover, the TAA-GCN showed reliability in different camera viewpoints and reduced quality images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro