Taming the sign problem of explicitly antisymmetrized neural networks via rough activation functions

05/24/2022
by   Nilin Abrahamsen, et al.
0

Explicit antisymmetrization of a two-layer neural network is a potential candidate for a universal function approximator for generic antisymmetric functions, which are ubiquitous in quantum physics. However, this strategy suffers from a sign problem, namely, due to near exact cancellation of positive and negative contributions, the magnitude of the antisymmetrized function may be significantly smaller than that before antisymmetrization. We prove that the severity of the sign problem is directly related to the smoothness of the activation function. For smooth activation functions (e.g., tanh), the sign problem of the explicitly antisymmetrized two-layer neural network deteriorates super-polynomially with respect to the system size. On the other hand, for rough activation functions (e.g., ReLU), the deterioration rate of the sign problem can be tamed to be at most polynomial with respect to the system size. Finally, the cost of a direct implementation of antisymmetrized two-layer neural network scales factorially with respect to the system size. We describe an efficient algorithm for approximate evaluation of such a network, of which the cost scales polynomially with respect to the system size and inverse precision.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset