Target Conditioned Sampling: Optimizing Data Selection for Multilingual Neural Machine Translation

05/20/2019
by   Xinyi Wang, et al.
0

To improve low-resource Neural Machine Translation (NMT) with multilingual corpora, training on the most related high-resource language only is often more effective than using all data available (Neubig and Hu, 2018). However, it is possible that an intelligent data selection strategy can further improve low-resource NMT with data from other auxiliary languages. In this paper, we seek to construct a sampling distribution over all multilingual data, so that it minimizes the training loss of the low-resource language. Based on this formulation, we propose an efficient algorithm, Target Conditioned Sampling (TCS), which first samples a target sentence, and then conditionally samples its source sentence. Experiments show that TCS brings significant gains of up to 2 BLEU on three of four languages we test, with minimal training overhead.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset