TarMAC: Targeted Multi-Agent Communication

10/26/2018
by   Abhishek Das, et al.
22

We explore a collaborative multi-agent reinforcement learning setting where a team of agents attempts to solve cooperative tasks in partially-observable environments. In this scenario, learning an effective communication protocol is key. We propose a communication architecture that allows for targeted communication, where agents learn both what messages to send and who to send them to, solely from downstream task-specific reward without any communication supervision. Additionally, we introduce a multi-stage communication approach where the agents co-ordinate via multiple rounds of communication before taking actions in the environment. We evaluate our approach on a diverse set of cooperative multi-agent tasks, of varying difficulties, with varying number of agents, in a variety of environments ranging from 2D grid layouts of shapes and simulated traffic junctions to complex 3D indoor environments. We demonstrate the benefits of targeted as well as multi-stage communication. Moreover, we show that the targeted communication strategies learned by agents are both interpretable and intuitive.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset