Taxonomy Completion with Probabilistic Scorer via Box Embedding

05/18/2023
by   Wei Xue, et al.
0

Taxonomy completion, a task aimed at automatically enriching an existing taxonomy with new concepts, has gained significant interest in recent years. Previous works have introduced complex modules, external information, and pseudo-leaves to enrich the representation and unify the matching process of attachment and insertion. While they have achieved good performance, these introductions may have brought noise and unfairness during training and scoring. In this paper, we present TaxBox, a novel framework for taxonomy completion that maps taxonomy concepts to box embeddings and employs two probabilistic scorers for concept attachment and insertion, avoiding the need for pseudo-leaves. Specifically, TaxBox consists of three components: (1) a graph aggregation module to leverage the structural information of the taxonomy and two lightweight decoders that map features to box embedding and capture complex relationships between concepts; (2) two probabilistic scorers that correspond to attachment and insertion operations and ensure the avoidance of pseudo-leaves; and (3) three learning objectives that assist the model in mapping concepts more granularly onto the box embedding space. Experimental results on four real-world datasets suggest that TaxBox outperforms baseline methods by a considerable margin and surpasses previous state-of-art methods to a certain extent.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset