TEDL: A Two-stage Evidential Deep Learning Method for Classification Uncertainty Quantification

09/12/2022
by   Xue Li, et al.
0

In this paper, we propose TEDL, a two-stage learning approach to quantify uncertainty for deep learning models in classification tasks, inspired by our findings in experimenting with Evidential Deep Learning (EDL) method, a recently proposed uncertainty quantification approach based on the Dempster-Shafer theory. More specifically, we observe that EDL tends to yield inferior AUC compared with models learnt by cross-entropy loss and is highly sensitive in training. Such sensitivity is likely to cause unreliable uncertainty estimation, making it risky for practical applications. To mitigate both limitations, we propose a simple yet effective two-stage learning approach based on our analysis on the likely reasons causing such sensitivity, with the first stage learning from cross-entropy loss, followed by a second stage learning from EDL loss. We also re-formulate the EDL loss by replacing ReLU with ELU to avoid the Dying ReLU issue. Extensive experiments are carried out on varied sized training corpus collected from a large-scale commercial search engine, demonstrating that the proposed two-stage learning framework can increase AUC significantly and greatly improve training robustness.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro