Temporal Perceiver: A General Architecture for Arbitrary Boundary Detection

03/01/2022
by   Yuhong Wang, et al.
0

Generic Boundary Detection (GBD) aims at locating general boundaries that divide videos into semantically coherent and taxonomy-free units, and could server as an important pre-processing step for long-form video understanding. Previous research separately handle these different-level generic boundaries with specific designs of complicated deep networks from simple CNN to LSTM. Instead, in this paper, our objective is to develop a general yet simple architecture for arbitrary boundary detection in videos. To this end, we present Temporal Perceiver, a general architecture with Transformers, offering a unified solution to the detection of arbitrary generic boundaries. The core design is to introduce a small set of latent feature queries as anchors to compress the redundant input into fixed dimension via cross-attention blocks. Thanks to this fixed number of latent units, it reduces the quadratic complexity of attention operation to a linear form of input frames. Specifically, to leverage the coherence structure of videos, we construct two types of latent feature queries: boundary queries and context queries, which handle the semantic incoherence and coherence regions accordingly. Moreover, to guide the learning of latent feature queries, we propose an alignment loss on cross-attention to explicitly encourage the boundary queries to attend on the top possible boundaries. Finally, we present a sparse detection head on the compressed representations and directly output the final boundary detection results without any post-processing module. We test our Temporal Perceiver on a variety of detection benchmarks, ranging from shot-level, event-level, to scene-level GBD. Our method surpasses the previous state-of-the-art methods on all benchmarks, demonstrating the generalization ability of our temporal perceiver.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro