Testing Against Independence and a Rényi Information Measure

05/28/2018
by   Amos Lapidoth, et al.
0

The achievable error-exponent pairs for the type I and type II errors are characterized in a hypothesis testing setup where the observation consists of independent and identically distributed samples from either a known joint probability distribution or an unknown product distribution. The empirical mutual information test, the Hoeffding test, and the generalized likelihood-ratio test are all shown to be asymptotically optimal. An expression based on a Rényi measure of dependence is shown to be the Fenchel biconjugate of the error-exponent function obtained by fixing one error exponent and optimizing the other. An example is provided where the error-exponent function is not convex and thus not equal to its Fenchel biconjugate.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro