TextZoo, a New Benchmark for Reconsidering Text Classification
Text representation is a fundamental concern in Natural Language Processing, especially in text classification. Recently, many neural network approaches with delicate representation model (e.g. FASTTEXT, CNN, RNN and many hybrid models with attention mechanisms) claimed that they achieved state-of-art in specific text classification datasets. However, it lacks an unified benchmark to compare these models and reveals the advantage of each sub-components for various settings. We re-implement more than 20 popular text representation models for classification in more than 10 datasets. In this paper, we reconsider the text classification task in the perspective of neural network and get serval effects with analysis of the above results.
READ FULL TEXT