The Blessings of Unlabeled Background in Untrimmed Videos
Weakly-supervised Temporal Action Localization (WTAL) aims to detect the intervals of action instances with only video-level action labels available during training. The key challenge is how to distinguish the segments of interest from the background segments, which are unlabelled even on the video-level. While previous works treat the background as "curses", we consider it as "blessings". Specifically, we first use causal analysis to point out that the common localization errors are due to the unobserved and un-enumerated confounder that resides ubiquitously in visual recognition. Then, we propose a Temporal Smoothing PCA-based (TS-PCA) deconfounder, which exploits the unlabelled background to model an observed substitute for the confounder, to remove the confounding effect. Note that the proposed deconfounder is model-agnostic and non-intrusive, and hence can be applied in any WTAL method without modification. Through extensive experiments on four state-of-the-art WTAL methods, we show that the deconfounder can improve all of them on the public datasets: THUMOS-14 and ActivityNet-1.3.
READ FULL TEXT