The Classical Capacity of Quantum Jackson Networks with Waiting Time-Dependent Erasures

06/09/2022
by   Jaswanthi Mandalapu, et al.
0

We study the fundamental limits of classical communication using quantum states that decohere as they traverse through a network of queues. We consider a network of Markovian queues, known as a Jackson network, with a single source or multiple sources and a single destination. Qubits are communicated through this network with inevitable buffering at intermediate nodes. We model each node as a `queue-channel,' wherein as the qubits wait in buffer, they continue to interact with the environment and suffer a waiting time-dependent noise. Focusing on erasures, we first obtain explicit classical capacity expressions for simple topologies such as tandem queue-channel and parallel queue-channel. Using these as building blocks, we characterize the classical capacity of a general quantum Jackson network with waiting time-dependent erasures. Throughout, we study two types of quantum networks, namely, (i) Repeater-assisted and (ii) Repeater-less. We also obtain optimal pumping rates and routing probabilities to maximize capacity in simple topologies. More broadly, our work quantifies the impact of delay-induced decoherence on the fundamental limits of classical communication over quantum networks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro