The Fine-Grained Complexity of Boolean Conjunctive Queries and Sum-Product Problems

04/27/2023
by   Austen Z. Fan, et al.
0

We study the fine-grained complexity of evaluating Boolean Conjunctive Queries and their generalization to sum-of-product problems over an arbitrary semiring. For these problems, we present a general semiring-oblivious reduction from the k-clique problem to any query structure (hypergraph). Our reduction uses the notion of embedding a graph to a hypergraph, first introduced by Marx. As a consequence of our reduction, we can show tight conditional lower bounds for many classes of hypergraphs, including cycles, Loomis-Whitney joins, some bipartite graphs, and chordal graphs. These lower bounds have a dependence on what we call the clique embedding power of a hypergraph H, which we believe is a quantity of independent interest. We show that the clique embedding power is always less than the submodular width of the hypergraph, and present a decidable algorithm for computing it. We conclude with many open problems for future research.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset