The Importance of Suppressing Domain Style in Authorship Analysis

05/29/2020
by   Sebastian Bischoff, et al.
0

The prerequisite of many approaches to authorship analysis is a representation of writing style. But despite decades of research, it still remains unclear to what extent commonly used and widely accepted representations like character trigram frequencies actually represent an author's writing style, in contrast to more domain-specific style components or even topic. We address this shortcoming for the first time in a novel experimental setup of fixed authors but swapped domains between training and testing. With this setup, we reveal that approaches using character trigram features are highly susceptible to favor domain information when applied without attention to domains, suffering drops of up to 55.4 percentage points in classification accuracy under domain swapping. We further propose a new remedy based on domain-adversarial learning and compare it to ones from the literature based on heuristic rules. Both can work well, reducing accuracy losses under domain swapping to 3.6

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset