The maximum discrete surface-to-volume ratio of space-filling curve partitions

06/24/2021
by   Maximilien Gadouleau, et al.
0

Space-filling curves (SFCs) are used in high performance computing to distribute a computational domain or its mesh, respectively, amongst different compute units, i.e. cores or nodes or accelerators. The part of the domain allocated to each compute unit is called a partition. Besides the balancing of the work, the communication cost to exchange data between units determines the quality of a chosen partition. This cost can be approximated by the surface-to-volume ratio of partitions: the volume represents the amount of local work, while the surface represents the amount of data to be transmitted. Empirical evidence suggests that space-filling curves yield advantageous surface-to-volume ratios. Formal proofs are available only for regular grids. We investigate the surface-to-volume ratio of space-filling curve partitions for adaptive grids and derive the maximum surface-to-volume ratio as a function of the number of cells in the partition. In order to prove our main theorem, we construct a new framework for the study of adaptive grids, notably introducing the concepts of a shape and of classified partitions. The new methodological framework yields insight about the SFC-induced partition character even if the grids refine rather aggressively in localised areas: it quantifies the obtained surface-to-volume ratio. This framework thus has the potential to guide the design of better load balancing algorithms on the long term.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset