The Minimality of the Georges-Kelmans Graph

01/04/2021
by   Gunnar Brinkmann, et al.
0

In 1971, Tutte wrote in an article that "it is tempting to conjecture that every 3-connected bipartite cubic graph is hamiltonian". Motivated by this remark, Horton constructed a counterexample on 96 vertices. In a sequence of articles by different authors several smaller counterexamples were presented. The smallest of these graphs is a graph on 50 vertices which was discovered independently by Georges and Kelmans. In this article we show that there is no smaller counterexample. As all non-hamiltonian 3-connected bipartite cubic graphs in the literature have cyclic 4-cuts – even if they have girth 6 – it is natural to ask whether this is a necessary prerequisite. In this article we answer this question in the negative and give a construction of an infinite family of non-hamiltonian cyclically 5-connected bipartite cubic graphs. In 1969, Barnette gave a weaker version of the conjecture stating that 3-connected planar bipartite cubic graphs are hamiltonian. We show that Barnette's conjecture is true up to at least 90 vertices. We also report that a search of small non-hamiltonian 3-connected bipartite cubic graphs did not find any with genus less than 4.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro