The Nonparanormal SKEPTIC

06/27/2012
by   Han Liu, et al.
0

We propose a semiparametric approach, named nonparanormal skeptic, for estimating high dimensional undirected graphical models. In terms of modeling, we consider the nonparanormal family proposed by Liu et al (2009). In terms of estimation, we exploit nonparametric rank-based correlation coefficient estimators including the Spearman's rho and Kendall's tau. In high dimensional settings, we prove that the nonparanormal skeptic achieves the optimal parametric rate of convergence in both graph and parameter estimation. This result suggests that the nonparanormal graphical models are a safe replacement of the Gaussian graphical models, even when the data are Gaussian.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset