The Surprising Effectiveness of MAPPO in Cooperative, Multi-Agent Games

03/02/2021
by   Chao Yu, et al.
7

Proximal Policy Optimization (PPO) is a popular on-policy reinforcement learning algorithm but is significantly less utilized than off-policy learning algorithms in multi-agent problems. In this work, we investigate Multi-Agent PPO (MAPPO), a multi-agent PPO variant which adopts a centralized value function. Using a 1-GPU desktop, we show that MAPPO achieves performance comparable to the state-of-the-art in three popular multi-agent testbeds: the Particle World environments, Starcraft II Micromanagement Tasks, and the Hanabi Challenge, with minimal hyperparameter tuning and without any domain-specific algorithmic modifications or architectures. In the majority of environments, we find that compared to off-policy baselines, MAPPO achieves better or comparable sample complexity as well as substantially faster running time. Finally, we present 5 factors most influential to MAPPO's practical performance with ablation studies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro