The Viterbi process, decay-convexity and parallelized maximum a-posteriori estimation

10/08/2018
by   Nick Whiteley, et al.
0

The Viterbi process is the limiting maximum a-posteriori estimate of the unobserved path in a hidden Markov model as the length of the time horizon grows. The existence of such a process suggests that approximate estimation using optimization algorithms which process data segments in parallel may be accurate. For models on state-space R^d satisfying a new "decay-convexity" condition, we approach the existence of the Viterbi process through fixed points of ordinary differential equations in a certain infinite dimensional Hilbert space. Quantitative bounds on the distance to the Viterbi process show that approximate estimation via parallelization can indeed be accurate and scaleable to high-dimensional problems because the rate of convergence to the Viterbi process does not necessarily depend on d.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset