The Weak Circular Repetition Threshold Over Large Alphabets

12/23/2019
by   Lucas Mol, et al.
0

The repetition threshold for words on n letters, denoted (n), is the infimum of the set of all r such that there are arbitrarily long r-free words over n letters. A repetition threshold for circular words on n letters can be defined in three natural ways, which gives rise to the weak, intermediate, and strong circular repetition thresholds for n letters, denoted _(n), _(n), and _(n), respectively. Currie and the present authors conjectured that _(n)=_(n)=(n) for all n≥ 4. We prove that _(n)=(n) for all n≥ 45, which confirms a weak version of this conjecture for all but finitely many values of n.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro