Theoretical Analysis of Adversarial Learning: A Minimax Approach
We propose a general theoretical method for analyzing the risk bound in the presence of adversaries. In particular, we try to fit the adversarial learning problem into the minimax framework. We first show that the original adversarial learning problem could be reduced to a minimax statistical learning problem by introducing a transport map between distributions. Then we prove a risk bound for this minimax problem in terms of covering numbers. In contrast to previous minimax bounds in lee,far, our bound is informative when the radius of the ambiguity set is small. Our method could be applied to multi-class classification problems and commonly-used loss functions such as hinge loss and ramp loss. As two illustrative examples, we derive the adversarial risk bounds for kernel-SVM and deep neural networks. Our results indicate that a stronger adversary might have a negative impact on the complexity of the hypothesis class and the existence of margin could serve as a defense mechanism to counter adversarial attacks.
READ FULL TEXT