Thermodynamically rational decision making under uncertainty

09/19/2023
by   Dorian Daimer, et al.
0

Inference principles are postulated within statistics, they are not usually derived from any underlying physical constraints on real world observers. An exception to this rule is that in the context of partially observable information engines decision making can be based solely on physical arguments. An inference principle can be derived from minimization of the lower bound on average dissipation [Phys. Rev. Lett., 124(5), 050601], which is achievable with a quasi-static process. Thermodynamically rational decision strategies can be computed algorithmically with the resulting approach. Here, we use this to study an example of binary decision making under uncertainty that is very simple, yet just interesting enough to be non-trivial: observations are either entirely uninformative, or they carry complete certainty about the variable that needs to be known for successful energy harvesting. Solutions found algorithmically can be expressed in terms of parameterized soft partitions of the observable space. This allows for their interpretation, as well as for the analytical calculation of all quantities that characterize the decision problem and the thermodynamically rational strategies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset