Thompson Sampling with Unrestricted Delays

02/24/2022
by   Han Wu, et al.
0

We investigate properties of Thompson Sampling in the stochastic multi-armed bandit problem with delayed feedback. In a setting with i.i.d delays, we establish to our knowledge the first regret bounds for Thompson Sampling with arbitrary delay distributions, including ones with unbounded expectation. Our bounds are qualitatively comparable to the best available bounds derived via ad-hoc algorithms, and only depend on delays via selected quantiles of the delay distributions. Furthermore, in extensive simulation experiments, we find that Thompson Sampling outperforms a number of alternative proposals, including methods specifically designed for settings with delayed feedback.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset