Timbre Transfer with Variational Auto Encoding and Cycle-Consistent Adversarial Networks

09/05/2021
by   Russell Sammut Bonnici, et al.
15

This research project investigates the application of deep learning to timbre transfer, where the timbre of a source audio can be converted to the timbre of a target audio with minimal loss in quality. The adopted approach combines Variational Autoencoders with Generative Adversarial Networks to construct meaningful representations of the source audio and produce realistic generations of the target audio and is applied to the Flickr 8k Audio dataset for transferring the vocal timbre between speakers and the URMP dataset for transferring the musical timbre between instruments. Furthermore, variations of the adopted approach are trained, and generalised performance is compared using the metrics SSIM (Structural Similarity Index) and FAD (Frechét Audio Distance). It was found that a many-to-many approach supersedes a one-to-one approach in terms of reconstructive capabilities, and that the adoption of a basic over a bottleneck residual block design is more suitable for enriching content information about a latent space. It was also found that the decision on whether cyclic loss takes on a variational autoencoder or vanilla autoencoder approach does not have a significant impact on reconstructive and adversarial translation aspects of the model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset