TOMAS: Topology Optimization of Multiscale Fluid Devices using Variational Autoencoders and Super-Shapes

09/15/2023
by   Rahul Kumar Padhy, et al.
0

In this paper, we present a framework for multiscale topology optimization of fluid-flow devices. The objective is to minimize dissipated power, subject to a desired contact-area. The proposed strategy is to design optimal microstructures in individual finite element cells, while simultaneously optimizing the overall fluid flow. In particular, parameterized super-shape microstructures are chosen here to represent microstructures since they exhibit a wide range of permeability and contact area. To avoid repeated homogenization, a finite set of these super-shapes are analyzed a priori, and a variational autoencoder (VAE) is trained on their fluid constitutive properties (permeability), contact area and shape parameters. The resulting differentiable latent space is integrated with a coordinate neural network to carry out a global multi-scale fluid flow optimization. The latent space enables the use of new microstructures that were not present in the original data-set. The proposed method is illustrated using numerous examples in 2D.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro